Home
Class 12
MATHS
In = int0^(pi/4) tan^n x dx , then the v...

`I_n = int_0^(pi/4) tan^n` x dx , then the value of `n(l_(n-1) + I_(n+1))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, then the value of n(l_(n-1)+I_(n+1)) is

If I_(n)=int_(0)^((pi)/(4)) tan^(n)x dx , then the value of (I_(8)+I_(6)) is -

If I_(n)=int_(0)^((pi)/(4)) tan^(n)x dx , then the value of lim_(n to oo) n(I_(n)+I_(n-2)) is -

If I_(n) = int_0^(pi/4) tan^(n)x dx , then n(I_(n-1)+I_(n+1)) =

If I_n = int_0^(pi//4) tan^n x dx , then lim_(n to oo) n [I_n + I_(n -2)] equals :

IF I_n=int_0^(pi//4) tan^n x dx then what is I_n+I_(n+2) equal to

I_(n) = int_0^(pi/4) tan^(n) x dx, n in N , then I_(10)+I_(8) =

If I_(n)=int_(0)^(pi//4) tan^(n) x dx, lim_(n to oo) n(I_(n+1)+I_(n-1)) equals

If U_(n) = int_0^(pi/4) tan^(n) x dx then u_(n)+u_(n-2) =