Home
Class 12
MATHS
If A is an invertible matrix, then prove...

If A is an invertible matrix, then prove that `(A^1)^(-1) = (A^(-1))^1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is an invertible matrix of order 2, then det( A^(-1) )=

If A is a 2xx2 invertible matrix, then value of det A^(-1) is

If A is a invertible matrix of order 4 then |A^(-1)|=

If A is an invertible square matrix then |A^(-1)| =?

If A is a non singular matrix; then prove that |A^(-1)|=|A|^(-1)

If A is an invertible matrix of order 2 then find |A^(-1)|

Let A and B be invertible matrices then prove that (AB)^-1=B^-1A^-1 .

If A is an invertible matrix,tehn (adj.A)^(-1) is equal to adj.(A^(-1)) b.(A)/(det.A) c.A d.(det A)A

If A is a non-singular matrix then prove that A^(-1) = (adjA)/(|A|) .