Home
Class 12
MATHS
[" 1149.The locus of the point "(l,m)" ....

[" 1149.The locus of the point "(l,m)" .If the line "],[" ea "l_(" X ")+" my "=1" touches the circle "x^(2)+y^(2)=a^(2)" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the point (l,m) if the line lx+my=1 touches the circles x^(2)+y^(2)=a^(2) is

The locus of th point (l,m). If the line lx+my=1 touches the circle x^(2)+y^(2)=a^(2) is

The locus of th point (l,m). If the line lx+my=1 touches the circle x^(2)+y^(2)=a^(2) is

The locus of the point (h,k) for which the line hx+ky=1 touches the circle x^2+y^2=4

If the line lx+my-1=0 touches the circle x^(2)+y^(2)=a^(2), then prove that (l,m) lies on a circle.

If the line (x)/(l)+(y)/(m)=1 touches the parabola y^(2)=4a(x+b) then m^(2)(l+b)=

If the line lx+my+n=0 touches the circle x^(2)+y^(2)=a^(2), then prove that (l^(2)+m^(2))^(2)=n^(2)

If the chord of contact of tangents from a point (x_(1),y_(1)) to the circle x^(2)+y^(2)=a^(2) touches the circle (x-a)^(2)+y^(2)=a^(2), then the locus of (x_(1),y_(1)) is

If the straight line lx+my+n=0 touches the : circle x^(2)+y^(2)=a^(2) , show that a^(2)(l^(2)+m^(2))=n^(2)