Home
Class 11
MATHS
if f(x)=3+x , x < 1 and f(x)=4-x , x >= ...

if `f(x)=3+x , x < 1` and `f(x)=4-x , x >= 1` then `lim_(x->1) f(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=xtan^(-1)x , then lim_(xto1)(f(x)-f(1))/(x-1)=

If (x^2+x−2)/(x+3) 1) f(x) then find the value of lim_(x->1) f(x)

If f(x) is a continuous function satisfying f(x)f(1/x) =f(x)+f(1/x) and f(1) gt 0 then lim_(x to 1) f(x) is equal to

Statement - 1: The function f(x) = {x}, where {.} denotes the fractional part function is discontinuous a x = 1 Statement -2: lim_(x->1^+) f(x)!= lim_(x->1^+) f(x)

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is

If (x^2+x−2)/(x+3) -1) f(x) then find the value of lim_(x->-1) f(x)

If lm_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {{f(x)+(3f(x)−1)/(f_2(x))}=3 ,then the value of lim_(x->oo) f(x) is

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

If f is differentiable at x=1, then lim_(x rarr 1) (x^(2) f(1)-f(x))/(x-1) is