Home
Class 11
MATHS
The value of lim(x->0) [sinx/x] is (wher...

The value of `lim_(x->0) [sinx/x]` is (where `[.]` denotes greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve lim_(xto0)[(sinx)/x] (where [.] denotes greatest integer function)

Solve lim_(xrarr0^+)[sinx/x] (where [.] denotes greatest integer function.)

Solve lim_(xrarr0^-)[sinx/x] (where [.] denotes greatest integer function.)

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

lim_(x -> 0)[sin[x-3]/([x-3])] where [.] denotes greatest integer function is

The value of lim_(x rarr1)[sin^(-1)x] is : (Where [.) denotes greatest integer function).

The value of lim_(x->0) [x^2/(sin x tan x)] (Wherer [*] denotes greatest integer function) is