Home
Class 12
MATHS
Let f(x) = cos2x.cos4x.cos6x.cos8x.cos10...

Let `f(x) = cos2x.cos4x.cos6x.cos8x.cos10x` then `lim_(x ->0) (1 - (f(x))^3)/(55sin^2x)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos x cos2x cos4x cos8x cos16x then

f(x)=cos x*cos2x*cos4x*cos8x.cos16x then find f'((pi)/(4))

If f(x)=cos x*cos2x*cos4x*cos8x.cos16x, then f'((pi)/(4)) is :

If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If f(x)=cos x cos2x cos4x cos8x cos16x then f'((pi)/(4)) equals