Home
Class 11
MATHS
For |z-1|=1, show that tan{[a r g(z-1)]/...

For `|z-1|=1,` show that `tan{[a r g(z-1)]/2}-((2i)/z)=-i`

Promotional Banner

Similar Questions

Explore conceptually related problems

For |z-1|=1 , i tan(("arg"(z-1))/(2))+(2)/(z) is equal to ________

For |z-1=1,i tan((arg(z-1))/(2))+(2)/(z) is

If |z-1|=1, where is a point on the argand plane, show that (z-2)/(z)=i tan (argz),where i=sqrt(-1).

If z_(1)=1+i,z_(2)=1-i then (z_(1))/(z_(2)) is

If z_(1)=1+i,z_(2)=sqrt(3)+i then arg((z_(1))/(z_(2)))^(50) is

Given that |z-1|=1, where z is a point on the argand planne , show that (z-2)/(z)=itan (arg z), where i=sqrt(-1).

If (1+i)z=(1-i)phi z, then show that z=-iz

If z_(1)=2+8i and z_(2)=1+2i then (z_(1))/(z_(2))=