Home
Class 11
MATHS
If (a x^2+c)y+(a^(prime)x^2+c^(prime) )=...

If `(a x^2+c)y+(a^(prime)x^2+c^(prime) )=0` and `x` is a rational function of `y` and `ac` is negative, then
a. `a c^(prime)+c^(prime)c=0`
b. `a//a '=c//c '`
c. `a^2+c^2=a^('2)+c^('2)`
d. `a a^(prime)+c c^(prime)=1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If the equations x^2+p x+q=0a n dx^2+p^(prime)x+q^(prime)=0 have a common root, then it must be equal to a. (p^(prime)-p ^(prime) q)/(q-q^(prime)) b. (q-q ')/(p^(prime)-p) c. (p^(prime)-p)/(q-q^(prime)) d. (p q^(prime)-p^(prime) q)/(p-p^(prime))

If the abscissae and the ordinates of two point Aa n dB be the roots of a x^2+b x+c=0a n da^(prime)y^2+b^(prime)y=c^(prime)=0 respectively, show that the equation of the circle described on A B as diameter is a a^(prime)(x^2+y^2)+a^(prime)b x+a b^(prime)y+(c a^(prime)+ca)=0.

If y is a function of x and ln(x+y)-2x y=0, then the value of y^(prime)(0) is equal to 1 (b) -1 (c) 2 (d) 0

The determinant |y^2-x y x^2a b c a ' b ' c '| is equal to a. |b x+a y c x+b y b^(prime)x+a ' y c^(prime)x+b ' y| b. |a x+b y b x+c y a^(prime)x+b ' y b ' x+c ' y| c. |b x+c y a x+b y b^(prime)x+c ' y a^(prime)x+b ' y| d. |a x+b y b x+c y a^(prime)x+b ' y b^(prime)x+c ' y|

If the normal to the given hyperbola at the point (c t , c/t) meets the curve again at (c t^(prime), c/t^(prime)), then (A) t^3t^(prime)=1 (B) t^3t^(prime)=-1 (C) t t^(prime)=1 (D) t t^(prime)=-1

The LCM and HCF of two rational numbers are equal,then the numbers must be (a) prime (b) co-prime (c) composite (d) equal

The condition that one of the straight lines given by the equation a x^2+2h x y+b y^2=0 may coincide with one of those given by the equation a^(prime)x^2+2h^(prime)x y+b^(prime)y^2=0 is (a b^(prime)-a^(prime)b)^2=4(h a^(prime)-h^(prime)a)(b h^(prime)-b^(prime)h) (a b^(prime)-a^(prime)b)^2=(h a^(prime)-h^(prime)a)(b h^(prime)-b^(prime)h) (h a^(prime)-h^(prime)a)^2=4(a b^(prime)-a^(prime)b)(b h^(prime)-b^(prime)h) (b h^(prime)-b^(prime)h)^2=4(a b^(prime)-a^(prime)b)(h a^(prime)-h^(prime)a)

if a N= {a x:x iin N} and b N cap c N , where b,c in N are relatively prime , then