Home
Class 12
MATHS
Let A0,A1,.......,A(n-1) be a n-sided ...

Let `A_0,A_1,.......,A_(n-1)` be a n-sided polygon with vertices as `1,omega,omega^2,.......,omega^(n-1)` Let `B_1, B_1,..... B_(n -1)` be another polygon with vertices `1 , 1 + omega, 1 +omega^2,........,1+omega^(n-1)[omega=cos((2pi )/n)+i sin n((2pi)/n)] ` for `n=4,(A rdot(A_0, A_1, A_2, A_3))/(A r*(B_0, B_1, , B_3))` is `lambda` then

Promotional Banner

Similar Questions

Explore conceptually related problems

if 1 , omega ,omega^2 ,............. omega^(n-1) are nth roots of unity , then (1-omega) (1-omega^2).......(1-omega^(n-1)) equal to

The value of (1+omega^(2)+2 omega)^(3n)-(1+omega+2 omega^(2))^(3n) is

If omega be a nth root of unity, then 1+omega+omega^2+…..+omega^(n-1) is (a)0(B) 1 (C) -1 (D) 2

If omega be a nth root of unity, then 1+omega+omega^2+…..+omega^(n-1) is (a)0(B) 1 (C) -1 (D) 2

If omega_0 , omega_1 , ………, omega_( n - 1) are the nth roots of unity then (1 + 2 omega_0) ( 1 + 2 omega_1) (1 + 2 omega_2)…..(1 + 2omega_(n - 1) ) =

The value of (1+omega^(2)+2 omega)^(3 n)-(1+omega+2 omega^(2))^(3 n)=

if 1,omega,omega^(2),............omega^(n-1) are nth roots of unity,then (1-omega)(1-omega^(2))......(1-omega^(n-1)) equal to

If 1,omega,......,omega^(n-1) are the n^(th) roots of unity,then value of (1)/(2-omega)+(1)/(2-omega^(2))......+(1)/(2-omega^(n-1)) equals

If omega = "cos"(pi)/(n) + "i sin" (pi)/(n) , then value of 1 + omega + omega^(2) +...+omega^(n-1) is