Home
Class 12
MATHS
[" The value of "k" so that "x^(2)+y^(2)...

[" The value of "k" so that "x^(2)+y^(2)+kx+4y+2=0" and "2(x^(2)+y^(2))-4x-3y+k=0" cut orthogonally,is "],[[" a) "(10)/(3)," b) "-(8)/(3)," c) "-(10)/(3)," d) "(8)/(3)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of k, if the circles 2x ^(2) + 2y ^(2) - 4x + 6y = 3 and x ^(2) + y ^(2) + kx + y =0 cut orthogonally is

For what value of k is the circle x^(2)+y^(2)+5x+3y+7=0 and x^(2)+y^(2)-8x+6y+k=0 cut each other orthogonally.

Find the value of k, if the circles x^(2) + y^(2) + 4x + 8 = 0 and x^(2) + y^(2) - 16y + k = 0 are orthogonal.

If the circles x^(2) + y^(2) - 6x - 8y + 12 = 0 , x^(2) + y^(2) - 4x + 6y + k = 0 cut orthogonally, then k =

If 2x^(2)+2y^(2) +4x+5y+1=0 and 3x^(2)+3y^(2)+6x -7y+3k=0 are orthogonal ,then value of k is

The circles x^2+y^2+4x+6y+3=0 and 2(x^2+y^2)+6x+4y+c=0 will cut orthogonally if c is :

If the two circles 2x^(2) +2y^(2) -3x+6y+k=0 and x^(2) +y^(2) -4x +10y +16=0 cut orthogonally, then the vlaue of k is-

The circles x^2+y^2-6x-8y+12=0, x^2+y^2-4x+6y+k=0 , cut orthogonally then k=

The circles x^2+y^2-6x-8y+12=0, x^2+y^2-4x+6y+k=0 , cut orthogonally then k=

If the two circle x^(2) + y^(2) - 10 x - 14y + k = 0 and x^(2) + y^(2) - 4x - 6y + 4 = 0 are orthogonal , find k.