Home
Class 12
MATHS
(w)sqrt(1+sin2x)...

(w)sqrt(1+sin2x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x (a) sqrt(1+sin2x),

Differentiate tan^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) w.r.t.x .

Differentiate w.r.t x the function 0 lt x lt (pi)/(2), cot^(-1) [(sqrt(1 + sin x) + sqrt(1-sin x))/(sqrt(1+ sin x)-sqrt(1-sin x))]

show that , cot ^(-1) {(sqrt(1+sin x)+sqrt(1- sin x))/( sqrt(1+sin x)- sqrt(1-sin x))}=(x)/(2),0 lt x lt (pi)/(2)

Differentiate w.r.t x : cot^-1{(sqrt (1+sin x) + sqrt (1-sin x))/(sqrt (1+sin x) - sqrt (1-sin x))}, 0 < x < pi/2

Differentiate w.r.t x : tan^-1{(sqrt (1+sin x) + sqrt (1-sin x))/(sqrt (1+sin x) - sqrt (1-sin x))}, 0 < x < pi/2

Differentiate w.r.t x : cot^-1{(sqrt (1+sin x) + sqrt (1-sin x))/(sqrt (1+sin x) - sqrt (1-sin x))}, 0 < theta < pi/2

Differentiate w.r.t.x the function cot^(^^)(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)(sqrt(1-sin x))],0