Home
Class 12
MATHS
e^(ax)sin^(-1)bx...

e^(ax)sin^(-1)bx

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivative of the following function with respect to 'x' e^(ax).sin^-1bx

e^(ax).sin^-1bx

e^(ax).sin^-1bx

Find derivative of y=e^(ax)sin bx

find y_(n) where y=e^(ax)sin bx

Verify that the function y=c_(1)e^(ax)cos(bx)+c_(2)e^(ax)sin(bx)

d/(dx)[(e^(ax))/(sin(bx+c))]=

d/(dx)[e^(ax)/(sin(bx+c))]=

(d)/(dx) {e ^(ax)sin (bx+c)}=

Let f(x)=e^(ax)sin(bx+c) and f''(x)=r^2e^(ax)sin(bx+theta) ,then-