Home
Class 10
MATHS
" Is,"quad | alpha ard beta" are roets o...

" Is,"quad | alpha ard beta" are roets of "ax^(2)+bx+b=0," then "sqrt((a)/(beta))+sqrt((theta)/(a))+sqrt((b)/(a))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of ax^(@)+bx+b=0, then sqrt((alpha)/(beta))+sqrt((beta)/(alpha))+sqrt((b)/(a)) is equal to

If a,b are real nos.of the same sign such that b^(2)>=4ab and alpha,beta are roots of ax^(2)+bx+b=0, then sqrt((alpha)/(beta))+sqrt((beta)/(alpha))-sqrt((b)/(a)) is :

If alpha, beta be the roots of px^(2)-qx +q=0 , then show that sqrt((alpha)/(beta)) +sqrt((beta)/(alpha)) - sqrt((g)/(p))=0 .

IF alpha , beta are the roots of ax^2+bx +c=0 then ((alpha )/(beta )-(beta )/( alpha ))^2 =

If alpha,beta are the roots of the equation ax^(2)-bx+b=0 , prove that sqrt((alpha)/(beta))+sqrt((beta)/(alpha))-sqrt((b)/(a))=0 .

If alpha, beta are the roots of ax^(2)+ bx+ b = 0 " then what is " (sqrt(alpha))/(sqrt(beta))+(sqrt(beta))/(sqrt(alpha))+(sqrt(b))/(sqrt(a)) equal to ?

If alpha,beta are roots of ax^2+2bx+c=0 then sqrt(alpha/beta)+sqrt(beta/alpha)= __________ .

If alpha and beta are roots of ax^2+bx+c =0 then prove that (alpha/beta+beta/alpha) = ((b^2-2ac)/(ac))

IF alpha , beta are the roots of ax ^2 + bx +c=0 then (alpha ^2)/( beta ) +( beta ^2)/( alpha )

If alpha and beta are roots of the equation qx^2+px+p=0 ,show that sqrt(alpha/beta)+sqrt(beta/alpha)+sqrt(p/q)=0