Home
Class 10
MATHS
(x^(4))/(16)-(y^(4))/(81)...

(x^(4))/(16)-(y^(4))/(81)

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise : (x^(4))/(16)-(y^(4))/(25)

The value of ((256x^(16))/(81y^(4)))^(-(1)/(4))' is

If x=-2 and y=1, by using an identity find the value: (4y^(2)-9x^(2))(16y^(4)+36x^(2)y^(2)+81x^(4))

If log_(x)((9)/(16))=-(1)/(2), then x is equal to a.-(3)/(4) b.(3)/(4) c.(81)/(256)d.(256)/(81)

(1)/(2)+(1)/(4)+(1)/(8)+(1)/(16)+....=x,(1)/(3)+(1)/(9)+(1)/(21)+(1)/(81)+...=y then 2x+4y=

(x-y)(x+y)(x^(2)+y^(2))(x^(4)+y^(4)) is equal ot: x^(16)-y^(16)(b)x^(8)-y^(8)x^(8)+y^(8)(d)x^(16)+y^(16)

Simplify root(4)(81x^(8) y^(4)z^(16))

Factorize: x^(4)-y^(4) (ii) 16x^(4)-81x^(4)-(y+z)^(4)( iv )2x-32x^(5)3a^(4)-48b^(4)(vi)81x^(4)-121x^(2)

If x=3 and y=-1, find the values of each of the using identity: (9y^(2)-4x^(2))(81y^(4)+36x^(2)y^(2)+16x^(4))

If in a binomial distribution n=4,P(X=0)=(16)/(81), then P(X=4) equals (1)/(16) b.(1)/(81) c.(1)/(27) d.(1)/(8)