Home
Class 12
MATHS
" 3."|[1,a,a^(3)],[1,beta,beta^(3)],[1,g...

" 3."|[1,a,a^(3)],[1,beta,beta^(3)],[1,gamma,gamma^(3)]|=(a-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Promotional Banner

Similar Questions

Explore conceptually related problems

|[1,alpha,alpha^3],[1,beta,beta^3],[1,gamma,gamma^3]|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+ beta+gamma)

Show that |(1,alpha,alpha^3),(1,beta,beta^3),(1,gamma,gamma^3)|=(alpha-beta)(beta-gamma)(gamma-alpha)( alpha+beta+gamma)

|{:(1,alpha,alpha^3),(1,beta,beta^3),(1,gamma,gamma^3):}|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

|{:(1,alpha,alpha^2),(1,beta,beta^2),(1,gamma,gamma^2):}|=(alpha-beta)(beta-gamma)(gamma-alpha)

Show that |[1,alpha,alpha^2],[1,beta,beta^2],[1,gamma,gamma^2]|=(alpha-beta)(beta-gamma)(gamma-alpha)

Prove that |[alpha,beta,gamma] ,[alpha^2,beta^2,gamma^2] , [beta+gamma, gamma+alpha, beta+alpha]| = (alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Prove that: |[alpha,beta,gamma],[alpha^2,beta^2,gamma^2],[beta+gamma,gamma+alpha,alpha+beta]|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma) .

Show that | (1,1,1), (alpha ^ 2, beta ^ 2, gamma ^ 2), (alpha ^ 3, beta ^ 3, gamma ^ 3) | = (alpha-beta) (beta-gamma) (gamma-alpha) (alphabeta + betagamma + gammaalpha) |

Using properties of determinant prove that |{:(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha,alpha+beta):}|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Prove that, |{:(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha,alpha+beta):}|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)