Home
Class 8
MATHS
" Whet prove that "(d)/(dx)(sin^(-1)x)=(...

" Whet prove that "(d)/(dx)(sin^(-1)x)=(1)/(sqrt(1-x^(2)))," where "x in]-1,1[

Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx) (sin^(-1) x/a)

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=

Prove that: d/dx[sin^-1sqrtx]=1/(2sqrt(x-x^2))

(d)/(dx)[sin^(-1)sqrt(((1-x))/(2))]=

Prove that (d)/(dx)[(sin2x+1/(cos^2x)]

(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=

(d)/(dx ) {Sin ^(-1) ""(x)/( sqrt(1+ x^(2)))}=

(d)/(dx)[sin^(-1)((2^(x+1))/(1+4^(x)))]

(d)/(dx) {Sin ^(-1) ""(sqrt((1-x)/2)}=