Home
Class 11
MATHS
Prove that: sin^2(pi/8)+sin^2((3pi)/8)+s...

Prove that: `sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^4(pi/8)+sin^4((3pi)/8)+sin^4((5pi)/8)+sin^4((7pi)/8)=3/2

Prove that: sin^4((pi)/8)+sin^4((3pi)/8)+sin^4((5pi)/8)+sin^4((7pi)/8)=3/2

Show that: sin^2 pi/8 + sin^2 (3pi)/8+sin^2 (5pi)/8+sin^2 (7pi)/8=2

cos^2(pi/8) +cos^2((3pi)/8) +cos^2((5pi)/8)+cos^2 ((7pi)/8)=2

The value of sin^2 (pi/8)+sin^2 ((3pi)/8)+sin^2 ((5pi)/8)+sin^2 ((7pi)/8) is

Prove any of the following sin^2(pi/8)+sin^2(3pi/8)+sin^2(5pi/8)+sin^2(7pi/8)=2

"sin"^(4)pi/8" +sin"^(4)(3pi)/8" +sin"^(4)(5pi)/8" +sin"^(4)(7pi)/8=

Prove that sin (pi/14)sin((3pi)/14)sin((5pi)/14)=1/8

Prove that sin^(4) pi/8+ sin^(4) 3pi/8 + sin^(4) 5pi/8 + sin^(4) 7pi/8 = 3/2 .

Evaluate sin^2(pi/4)+sin^2 (3pi/4)+sin^2(5pi/4)+sin^2(7pi/4)