Home
Class 12
MATHS
10*e^(x-y)=log((x)/(y))...

10*e^(x-y)=log((x)/(y))

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(x-y) =log ((x)/(y)),then (dy)/(dx) =

x^(log_(10)((y)/(z))).y^(log_(10)((z)/(x))).z^(log_(10)((x)/(y))) is equal to :

x^(log_(10)((y)/(z))).y^(log_(10)((z)/(x))).z^(log_(10)((x)/(y))) is equal to :

If (log_(e)x)/(y-z)=(log_(e)y)/(z-x)=(log_(e)z)/(x-y), prove that xyz=1

Find the area enclosed by y=log_(e)(x+e) and x=log_(e)((1)/(y)) and the x-axis.

Find the area enclosed by y=log_(e)(x+e) and x=log_(e)((1)/(y)) and the x-axis.

Find the area bounded by y=log_(e)x,y=-log_(e)x,y=log_(e)(-x),andy=-log_(e)(-x)

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

If x^(y) = e^(x - y) prove that (dy)/(dx) = (log_(e)x)/((1 + log_(e)x)^(2)) .