Home
Class 12
MATHS
" The function "L(x)=int(-)^(x)(dt)/(t)"...

" The function "L(x)=int_(-)^(x)(dt)/(t)" satisfies the equation "

Promotional Banner

Similar Questions

Explore conceptually related problems

The function L(x)=int_(1)^(x)(dt)/t satisfies the equation

The function L(x)=int_(1)^(x)(dt)/t satisfies the equation

The function L(x) = int_1^x (dt)/t satisfies the equation:

For the function f(x)=int_(0)^(x)(sin t)/(t)dt where x>0

The points of extrema of the function f(x)= int_(0)^(x)(sin t)/(t)dt in the domain x gt 0 are-

The interval in which the function f(x)=int_(0)^(x) ((t)/(t+2)-1/t)dt will be non- increasing is

Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x-int_(0)^(x)(x-t)f^(')(t)dt y satisfies the differential equation

Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x-int_(0)^(x)(x-t)f^(')(t)dt y satisfies the differential equation

Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x-int_(0)^(x)(x-t)f^(')(t)dt y satisfies the differential equation