Home
Class 12
MATHS
The value of limit lim(t->oo) (int0^1 (t...

The value of limit `lim_(t->oo) (int_0^1 (tan^(-1) x)^2dx)/sqrt(t^2+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

the value of lim_(x rarr oo)(int_(0rarr x)(tan^(-1)x)^(2)dx)/(sqrt(x^(2)+1))

The value of lim_(x rarr oo)(int_(0)^(x)(tan^(-1)x)^(2))/(sqrt(x^(2)+1))dx

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)dt)/(sqrt(x^(2)+1)) is equal to

Calculate the reciprocal of the limit lim_(x->oo) int_0^x xe^(t^2-x^2) dt

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(x->0) cosec^4 x int_0^(x^2) (ln(1 +4t))/(t^2+1) dt is