Home
Class 12
MATHS
" 3."sin^(2)x,cos^(3)x,cot^(3)x,sec^(2)x...

" 3."sin^(2)x,cos^(3)x,cot^(3)x,sec^(2)x

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))dx is equal to (1) (1)/(3(1+tan^(3)x))+C(2)(-1)/(3(1+tan^(3)x))+C(3)(1)/(1+cot^(3)x)+C(4)(-1)/(1+cot^(3)x)+C

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx

Integrate sin x.sin2x.sin3x+sec^(2)x*cos^(2)2x+sin^(4)x*cos^(4)x

(int(sin^(3/2)x+cos^(3/2)x)dx)/(sqrt(sin^(3)x cos^(3)x sin(x-alpha)))

int(sin^(3)xdx)/((cos^(4)x+3cos^(2)x+1)tan^(-1)(sec x+cos x))

Evaluate: int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin^2x + sin^3x cos^2x + cos^5x)^2 \ dx

int (sin ^ (2) x cos ^ (2) x) / ((sin ^ (5) x + cos ^ (3) x sin ^ (2) x + sin ^ (3) x cos ^ (2) x + cos ^ (5) x) ^ (2)) dx

Evaluate: int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin^2x + sin^3x cos^2x + cos^5x)^2 \ dx