Home
Class 12
MATHS
Let f(x)=ax^2+ bx + c where a b,c epsilo...

Let `f(x)=ax^2+ bx + c` where `a b,c epsilon R`and `a!=0`lt is given that `f(5)=-3f(2)` and `3` is a root of `f(x)=0`then:

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=ax^(2)+bx+c where ab,c varepsilon Randa!=0lt is given that f(5)=-3f(2) and 3 is a root of f(x)= Othen:

Let f(x)=a^2+b x+c where a ,b , c in R and a!=0. It is known that f(5)=-3f(2) and that 3 is a root of f(x)=0. Then find the other of f(x)=0.

Let f(x)=a^2+b x+c where a ,b , c in R and a!=0. It is known that f(5)=-3f(2) and that 3 is a root of f(x)=0. Then find the other root of f(x)=0.

Let f(x)=a^2+b x+c where a ,b , c in Ra n da!=0. It is known that f(5)=-3f(2) and that 3 is a root of f(x)=0. then find the other of f(x)=0.

Let f(x)=a^(2)+bx+c where a ,b,cinRanda!=0. It is known that f(5)=-3f(2) and that 3 is a root of f(x)=0. then find the other of f(x)=0

Let f(x)=ax^(2)+bx+c, where a,b,c,in R and a!=0, If f(2)=3f(1) and 3 is a roots of the equation f(x)=0, then the other roots of f(x)=0 is

Consider the quadratic function f(x)=ax^(2)+bx+c where a,b,c in R and a!=0, such that f(x)=f(2-x) for all real number x. The sum of the roots of f(x) is

Let f(x)=ax^(2)+bx+c, where a,b,c in R,a!=0. Suppose |f(x)|<=1,x in[0,1], then

Let f(x) = a x^2 + bx + c , where a, b, c in R, a!=0 . Suppose |f(x)| leq1, x in [0,1] , then

Let f(x) = a x^2 + bx + c , where a, b, c in R, a!=0 . Suppose |f(x)| leq1, x in [0,1] , then