Home
Class 11
MATHS
What is the locus of z if ||z-cos^(-1)co...

What is the locus of `z` if `||z-cos^(-1)cos12|-|z-sin^(-1)s in 12||=8(pi-3)?`

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the locus of w if w=(3)/(z) and |z-1|=1?

What is the locus of z, if amplitude of (z-2-3i) is (pi)/(4)?

What is locus of z if z-1-sin^(-1)((1)/(sqrt(3)))|+|z+cos^(-1)((1)/(sqrt(3)))-(pi)/(2)|=1?

Find the locus of z if arg ((z-1)/(z+1))= pi/4

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , then

What is the value of (sin (x-y))/(cos x cos y)+(sin (y-z))/(cos y cos z)+(sin (z-x))/(cos z cos x) ?

If cos^(-1)x +cos^(-1)y +cos^(-1)z =3pi then x+y+z is :

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :