Home
Class 11
MATHS
If z is a complex number lying in the fo...

If `z` is a complex number lying in the fourth quadrant of Argand plane and `|[(kz)/(k+1)]+2i|>sqrt(2)` for all real value of`k(k!=-1),` then range of `"a r g"(z)` is `(pi/8,0)` b. `(pi/6,0)` c.`(pi/4,0)` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If z is a complex number lying in the fourth quadrant of the Argand plane and |(kz)/(k+1) + 2i|gt sqrt2 for all real values of k ( k ne -1) the find the range of arg (z)

If z=(-2)/(1+isqrt(3)) , then the value of "arg"(z) is a. pi b. pi/4 c. pi/3 d. (2pi)/3

If Z=-1+ i be a complex number. Then arg(Z) is equal to O pi O (3pi)/4 O pi/4 O 0

If Z=-1+ i be a complex number. Then arg(Z) is equal to O pi O (3pi)/4 O pi/4 O 0

If Z=-1+ i be a complex number. Then arg(Z) is equal to O pi O (3pi)/4 O pi/4 O 0

Find the complex number z if arg (z+1)=(pi)/(6) and arg(z-1)=(2 pi)/(3)

If for a complex number z=x+iy , sec^(-1)((z-2)/(i)) is a real angle in (0,(pi)/(2)),(x,y in R), then locus of z

If z=(1+2i)/(1-(1-i)^(2)), then arg (z) equals a.0 b.(pi)/(2) c.pi d .non of these

sqrt(3)int_0^pi dx/(1+2sin^2x)= (A) -pi (B) 0 (C) pi (D) none of these

Let w(Im w!=0) be a complex number.Then the set of all complex numbers z satisfying the equal w-bar(w)z=k(1-z), for some real number k,is :