Home
Class 14
MATHS
1.sin x*log(c)x...

1.sin x*log_(c)x

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the solution set of the equation log_((-x^(2)-6x)/(10))(sin3x+sin x)=log_((-x^(2)-6x)/(10))(sin2x)

Suppose that x is a real number with log_(5)(sin x)+log_(5)(cos x)=-1. The value of |sin^(2)x cos x+cos^(2)x sin x| is equal to

The value of lim_(x rarr0)(sin x+log_(e)(sqrt(1+sin^(2)x)-sin x))/(sin^(3)x)

log_(10)sin x+log_(10)cos x=-1 and log_(10)(sin x+cos x)=((log_(10)n)-1)/(2) then the value of 'n/3' is

If log_(10)sin x + log_(10)cos x=-1 and log_(10)(sin x + cos x)=((log_(10)n)-1)/(2) , then the value of 'n//3' is ......

log_(2)sin x-log_(2)cos x-log_(2)(1-tan x)-log_(2)(1+tan x)=-1

If log_(10)sin x+log_(10)cos x=-1 and log_(10)(sin x+cos x)=(log_(10)n-1)/(2) then the value of n is (a) 24 (b) 36(c)20(d)12

int (tan x dx)/(1-sin x)=(1)/(2)[(1)/(1-sin x)+log|secx-tan x|]+c

log_(cos x)sin x+log_(sin x)cos x=2then x=