Home
Class 9
MATHS
f(x)=x^(3)+4x^(2)-3x+10,g(x)=x+4...

f(x)=x^(3)+4x^(2)-3x+10,g(x)=x+4

Promotional Banner

Similar Questions

Explore conceptually related problems

Use the Factor Theorem to determine whether g(x) is factor of f(x) in each of the following cases : (i) f(x)=5x^(3)+x^(2)-5x-1, g(x)=x+1 (ii) f(x)=x^(3)+3x^(2)+3x+1,g(x)=x+1 (iii) f(x)=x^(3)-4x^(2)+x+6,g(x)=x-2 (iv) f(x)=3cx^(3)+x^(2)-20x+12,g(x)=3x-2 f(x)=4x^(3)+20x^(2)+33x+18,g(x)=2x+3

Identify polynomials in the following: f(x)=4x^(3)-x^(2)-3x+7g(x)=2x^(3)-3x^(2)+sqrt(x)-1p(x)=(2)/(3)x^(2)-(7)/(4)x+9q(x)=2x^(2)-3x+(4)/(x)+2h(x)=x^(4)-x^((2)/(3))+x-1f(x)=2+(3)/(x)+4x

f(x)=4x^(3)-12x^(2)+14x-3,g(x)=2x-1

If f(x)=x^(3)+2x^(2)+3x+4 and g(x) is the inverse of f(x) then g'(4) is equal to a.(1)/(4) b.0 c.(1)/(3) d.4

If f(x)=x^(3)+2x^(2)+3x+4 and g(x) is the inverse of f(x) then g'(4) is equal to- (1)/(4)(b)0 (c) (1)/(3)(d)4

if f(x)=4x^(3)-x^(2)-2x+1 and g(x)={min{f(t):0<=t<=x;0<=x<=1,3-x:1} then g(1/4)+g(3/4)+g(5/4) is equal to

f(x)=3x^(4)+17x^(3)+9x^(2)-7x-10;g(x)=x+

Use the Factor Theorem to determine whether g (x) is factor of f(x) in each of the following cases: (i) f (x) = 5x ^(3) + x ^(2)-5x -1, g (x)=x +1 (ii) f (x) = x ^(3) + 3x ^(2) + 3x +1 , g(x) =x +1 (iii) f (x) =x ^(3) - 4x ^(2) +x + 6, g (x) =x -2 (iv) f (x) = 3x ^(3) + x^(2) - 20x + 12, g (x) = 3x -2 (v) f (x) = 4x ^(3) + 20 x ^(2) + 33 x +18, g (x) =2x +3

Use the Factor Theorem to determine whether g (x) is factor of f(x) in each of the following cases: (i) f (x) = 5x ^(3) + x ^(2)-5x -1, g (x)=x +1 (ii) f (x) = x ^(3) + 3x ^(2) + 3x +1 , g(x) =x +1 (iii) f (x) =x ^(3) - 4x ^(2) +x + 6, g (x) =x -2 (iv) f (x) = 3x ^(3) - 20x + 12, g (x) = 3x -2 (v) f (x) = 4x ^(3) + 20 x ^(2) + 33 x +18, g (x) =2x +3