Home
Class 12
MATHS
y=sin^(-4)(2x sqrt(1-x^(2)))*-(1)/(sqrt(...

y=sin^(-4)(2x sqrt(1-x^(2)))*-(1)/(sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following: y=sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

Find (dy)/(dx) in the following: y= sin^(-1) (2x sqrt(1-x^(2))), (1)/(sqrt2) lt x lt 1

Prove that sin^(-1). ((x + sqrt(1 - x^(2)))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

Find dy/dx in the following: y=sin^-1(2x sqrt(1-x^2)) , -1/sqrt2ltxlt1/sqrt2

If y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2)) and (dy)/(dx)=1/(2sqrt(x(1-x)))+p , then p is equal to 0 (b) 1/(sqrt(1-x)) sin^(-1)sqrt(x) (d) 1/(sqrt(1-x^2))

Prove the following: sin^-1x-sin^-1y = sin^-1[x(sqrt(1-y^2))-y(sqrt(1-x^2))]