Home
Class 11
MATHS
Let alpha,beta be the roots of the equat...

Let `alpha,beta` be the roots of the equation `(x-a)(x-b)=c ,c!=0.` Then the roots of the equation `(x-alpha)(x-beta)+c=0` are `a , c` b. `b , c` c. `a , b` d. `a+c , b+c`

Text Solution

Verified by Experts

Since `alpha, beta` are the roots fo
`(x-a)(x-b)=c`
or `(x-a)(x-b)-c=0`
Then `(x-a)(x-b)-c-(x-alpha)(x-beta)`
`implies(x-alpha)(x-beta)+c=(x-a)(x-b)`
Hence roots of `(x-alpha)(x-beta)+c=0` are a,b.
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta be the roots of the equation (x-a)(x-b)=c and c!=0 ,then roots of the equation (x-alpha)(x-beta)+c=0 are

Let alpha,beta be the roots of the equation (x-a)(x-b)=c,c!=0 Then the roots of the equation (x-alpha)(x-beta)+c=0 are a,c (b) b,ca,b(d)a+c,b+c

Let alpha , beta be the roots of the equation (x-a) (x-b) = c , cne 0 , then find the roots of the equation (x - alpha) (x -beta) + c = 0

If alpha, beta be the roots of the equation (x-a)(x-b) + c = 0 (c ne 0) , then the roots of the equation (x-c-alpha)(x-c-beta)= c , are

If alpha,beta be the roots of the equation (x-a)(x-b)+c=0(c!=0), then the roots of the equation (x-c-alpha)(x-c-beta)=c are a and b+c (b) a+b and ba+c and b+c(d)a-candb-c

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 then the roots of the equation (a+b+c)x^(2)-(b+2c)x+c=0 are

If c,d are the roots of the equation (x-a)(x-b)-k=0, prove that a a,b are roots of the equation (x-c)(x-d)+k=0

Let alpha,beta be the roots of the quadratic equation ax^(2)+bx+c=0 then the roots of the equation +b(x+1)(x-2)+c(x-2)^(2)=0 are:-