Home
Class 12
MATHS
int(dx)/(x(1+log(e)x)(3+log(e)x))...

int(dx)/(x(1+log_(e)x)(3+log_(e)x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int{(1)/(log_(e)x)-(1)/((log_(e)x)^(2))}dx

int x^(x)(1+log_(e)x)dx

I=int(log_(e)(log_(e)x))/(x(log_(e)x))dx

The value of int(e^(5log_(e)x)+e^(4log_(e)x))/(e^(3log_(e)x)+e^(2log_(e)x))dx is

If int(log_(x)e.log_(ex)e.log_(e^(2)x)e)/(x)dx=A log_(e)(log_(e)x)+Blog_(e)(1+log_(e)x)+Clog_(e)(2+log_(e)x)+lambda, then

Evaluate: int(e^(5)(log)_(e)x-e^(4)(log)_(e)x)/(e^(3)(log)_(e)x-e^(2)(log)_(e^(x))x)dx

Evaluate: int(e^(6)(log)_(e)x-e^(5)(log)_(e)x)/(e^(4)(log)_(e)x-e^(3)(log)_(e^(x))x)dx

int [sin(log_(e)x)+cos(log_(e)x)]dx =

int_(0)^(16)(log_(e )x^(2))/(log_(e )x^(2)+log_(e )(x^(2)-44x+484))dx is equal to

int(e^(log_(e)x))/(x)dx