Home
Class 8
MATHS
(i)(a+b)^(2)=a^(2)+2ab+b^(2)...

(i)(a+b)^(2)=a^(2)+2ab+b^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

( a - b) ^(2) + 2ab = ? A. a^(2) - b^(2) B. a^(2) + b^(2) C. a^(2) - 4ab + b^(2) D. a^(2) - 2ab + b^(2)

tan (i log ((a-ib)/(a+ib))) = (i) ab (ii) (2ab)/(a^(2) -b^(2)) (iii) (a^( 2) -b^(2))/(ab) (iv) (2ab)/(a^(2)+b^(2))

Prove that |(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2))|=-(a^(3)+b^(3))^(2) .

Formulae for the sum and differences of cubes (i)a^(3)+b^(3)=(a+b)(a^(2)-ab+b^(2))(ii)a^(3)-b^(3)=(a-b)(a^(2)+ab+b^(2))

Using properties of determinants prove that |(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2))|=-(a^(3)+b^(3))^(2) .

If a=2 and b=-2, find the value of : (i) a^(2)+b^(2) (ii) a^(2)+ab+b^(2) (iii) a^(2)-b^(2)

Find the following products (i) (a-2b)(a^2+2ab+4b^2) (ii) (7a-5b)(49a^2+35ab+25b^2)

tan [ i log ((a - ib)/(a + ib )) ] is equal to : a) ab b) (2 ab)/( a ^(2) - b ^(2)) c) (a ^(2) - b ^(2))/( 2 ab) d) (2 ab)/( a ^(2) + b ^(2))