Home
Class 9
MATHS
Verify that x^(3)+y^(3)+z^(3)-3xyz=(1)/(...

Verify that `x^(3)+y^(3)+z^(3)-3xyz=(1)/(2)(x+y+z)[(x-y)^(2)+(y-z)^(2)+(z-x)^(2)]`

Text Solution

Verified by Experts

`R.H.S. = 1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
`=1/2(x+y+z)(x^2+y^2-2xy+y^2+z^2-2yz+z^2+x^2-2zx)`
`=1/2(x+y+z)(2x^2+2y^2+2z^2-2xy-2yz-2zx)`
`=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)`
We have the formula,
`x^3+y^3+z^3 -3xyz =(x+y+z)(x^2+y^2+z^2-xy-yz-zx)`
Thus, `L.H.S. = R.H.S.`
Promotional Banner

Similar Questions

Explore conceptually related problems

verify that x^(3)+y^(3)+z^(3)-3xyz=(1)/(2)(x+y+z)[(x-y)^(2)+(y-z)^(2)+(z-a)^(2)]

Prove that x^(3)+y^(3)+z^(3)-3xyz=(1)/(2)(x+y+z)[(x-y)^(2)+(y-z)^(2)+(z-x)^(2)]

Find ((x^(2)-y^(2))^(3) + (y^(2) -z^(2))^(3)+ (z^(2) -x^(2))^(3))/((x-y)^(3) + (y-z)^(3) + (z-x)^(3))

If x + y + z = xyz , prove that (3x -x^(3))/ (1-3x^(2)) + (3y -y^(3))/(1- 3y^(2)) +(3z -z^(3))/(1- 3z^(2)) = (3x -x^(3))/(1-3x)^(2) * (3y- y^(3))/(1-3x)^(2)* (3z- z^(3))/(1-3z)^(2) .

The value of the expression ((x ^(2) - y ^(2)) ^(3) + ( y ^(2) - z ^(2)) ^(3) + (z ^(2) - x ^(2)) ^(3))/((x - y) ^(3) + ( y - z) ^(3) + (z - x ) ^(3)) is

If x + y + z = xyz , prove that x(1 -y^(2)) (1- z^(2))+ y(1- z^(2))(1- x^(2)) +z(1-x^(2)) (1- y^(2)) = 4xyz .

Prove that |[x,x^(2),x^(4)],[y,y^(2),y^(4)],[z,z^(2),z^(4)]|=xyz(x-y)(y-z)(z-x)(x+y+z)

Express ((x^(3)+y^(3)+z^(3)-3xyz)/((x^(2)+y^(2)+z^(2)-xy-yz-zx))) in lowest terms

If (2x-y)^(2)+(3y-z)^(2)=0 then x:y:z is