Home
Class 12
MATHS
2*x^(2)(dy/dx)+y=1...

2*x^(2)(dy/dx)+y=1

Promotional Banner

Similar Questions

Explore conceptually related problems

For each of the following differential equations verify that the accompanying functions a solution.Differential Function x(dy)/(dx)=yy=axx+y(dy)/(dx)=0y=+-sqrt(a^(2)-x^(2))x(dy)/(dx)y=y^(2)y=(a)/(x+a)x^(3)(d^(2)y)/(dx^(2))=1y=ax+b+(1)/(2x)y=((dy)/(dx))^(2)y=(1)/(4)(x+-a)^(2)

(1+x^(2))(dy)/(dx) = 1-y

(y-x(dy)/(dx))=3(1-x^(2)(dy)/(dx))

Solve the following initial value problem: y-x(dy)/(dx)=2(1+x^(2)(dy)/(dx)),y(1)=1

Find the particular solution of each of the following equations: y-x(dy)/(dx)=2(1+x^(2)(dy)/(dx)) , given y=1, when x=1

Change the independent variable to o in the equation (d^(2)y)/(dx^(2))+(2x)/(1+x^(2))(dy)/(dx)+(y)/((1+x^(2))^(2))=0, by means of the transformation x=tan theta

Find the particular solution of each of the following equations: (1-x^(2))(dy)/(dx)=2y , given y=1, when x=2

y^(2)-(dy)/(dx)=x^(2)(dy)/(dx) A) y^(-1)+tan^(-1)x=c B) x^(-1)+tan^(-1)y=c C) y+tan^(-1)x=c D) x^(-1)+y^(-1)=tan^(-1)x+c

Solve the following differential equations (i) (1+y^(2))dx = (tan^(-1)y - x)dy (ii) (x+2y^(3))(dy)/(dx) = y (x-(1)/(y))(dy)/(dx) + y^(2) = 0 (iv) (dy)/(dx)(x^(2)y^(3)+xy) = 1

y^2+x^2(dy)/(dx)=x y(dy)/(dx)