Home
Class 12
MATHS
The range of f(x) = [sin{x}], where [x] ...

The range of `f(x) = [sin{x}]`, where `[x]` denotes greatest integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of f(x)=[4^(x)+2^(x)+1] (where [.] denotes greatest integer function) is

If f(x)=[2x], where [.] denotes the greatest integer function,then

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :

The range of the function f(x)=[sinx+cosx] (where [x] denotes the greatest integer function) is

The domain of the function f(x) =[x]sin pi/[x+1] , where [] denote greatest integer function is: