Home
Class 11
MATHS
If complex number z(z!=2) satisfies the ...

If complex number `z(z!=2)` satisfies the equation `z^2=4z+|z|^2+(16)/(|z|^3)` ,then the value of `|z|^4` is______.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z be a complex number satisfying the equation (z^(3)+3)^(2)=-16, then find the value of |z|

Non-real complex number z satisfying the equation z^(3)+2z^(2)+3z+2=0 are

If z is a complex number satisfying the equation |z+i|+|z-i|=8, on the complex plane thenmaximum value of |z| is

If complex number z=x +iy satisfies the equation Re (z+1) = |z-1| , then prove that z lies on y^(2) = 4x .

The number of complex number z satisfying the equations |z|-4=|z-i|-|z+5i|=0 is

If a complex number z satisfies |z|^(2)+(4)/(|z|)^(2)-2((z)/(barz)+(barz)/(z))-16=0 , then the maximum value of |z| is

For the complex number z satisfying the condition |z+(2)/(z)|=2 , the maximum value of |z| is

If z a complex number satisfying |z^(3)+z^(-3)|le2 , then the maximum possible value of |z+z^(-1)| is -

The complex number z satisfies z+|z|=2+8i. find the value of |z|-8