Home
Class 12
MATHS
The two circles x^2+y^2=ax and x^2+y^2=c...

The two circles `x^2+y^2=ax and x^2+y^2=c^2(c > 0)` touch each other if (1) `a=2c` (2) `|a|=2c` (3) `2|a|=c` (4) `|a|=c`

Promotional Banner

Similar Questions

Explore conceptually related problems

The two circles x^2+y^2=ax and x^2+y^2=c^2 (cgt0) touch each other if

The two circles x^(2)+y^(2)=ax, x^(2)+y^(2)=c^(2) (c gt 0) touch each other if

The two circles x^(2)+y^(2)=ax, x^(2)+y^(2)=c^(2) (c gt 0) touch each other if

The two circles x^2+""y^2=""a x and x^2+""y^2=""c^2(c"">""0) touch each other if : (1) 2|a|""=""c (2) |a|""=""c (3) a""=""2c (4) |a|""=""2c

The two circles x^2+""y^2=""a x and x^2+""y^2=""c^2(c"">""0) touch each other if : (1) 2|a|""=""c " " (2) |a|""=""c " " (3) a""=""2c " " (4) |a|""=""2c

The two circles x^(2)+y^(2)=ax and x^(2)+y^(2)=c^(2)(c gt 0) touch each other, if |(c )/(a )| is equal to

The two circles x^(2)+y^(2)=ax and x^(2)+y^(2)=c^(2)(c gt 0) touch each other, if |(c )/(a )| is equal to

If the circles x^2 + y^2 + 2ax + b = 0 and x^2+ y^2+ 2cx + b = 0 touch each other (a!=c)