Home
Class 11
MATHS
If z1, z2 and z3, are the vertices of a...

If `z_1, z_2 and z_3`, are the vertices of an equilateral triangle ABC such that ` |z_1 -i = |z_2 -i| = |z_3 -i|`.then `|z_1 +z_2+ z_3| `equals:

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i| = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals to : a) 3sqrt(3) b) sqrt(3) c) 3 d) 1/(3sqrt(3))

If z_(1),z_(2),z_(3) are the vertices of an equilational triangle ABC such that |z_(1)-i|=|z_(2)- i| = |z_(3)-i|, then |z_(1)+z_(2)+z_(3)| equals to

if the complex no z_(1),z_(2) and z_(3) represents the vertices of an equilateral triangle such that |z_(1)|=|z_(2)|=|z_(3)| then relation among z_(1),z_(2) and z_(3)

Let A(z_1),B(z_2) and C(z_3) be the vertices of an equilateral triangle in the Argand plane such that |z_1|=|z_2|=|z_3|. Then (A) (z_2+z_3)/(2z_1-z_2-z_3) is purely real (B) (z_2-z_3)/(2z_1-z_2-z_3) is purely imaginary (C) |arg(z_1/z_2)|=2 arg((z_3-z_2)/(z_1-z_2))| (D) none of these