Home
Class 12
MATHS
3^x+3^y+3^z+3^t=24, logzx+logzt=y, x/(x^...

`3^x+3^y+3^z+3^t=24, log_zx+log_zt=y, x/(x^4+y^2)+y/(x^2+y^4)=1/(x y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If w(x,y,z) = log((5x^(3)y^(4) + 7y^(2)xz^(4) - 75y^(3)z^(4))/(x^(2) + y^(2))) , find x(del w)/(del x) + y(del w)/(del y) + z(del w)/(del z) ,

If x^(18)= y^(21) = z^(28) , then 3, 3log_(y)x, 3log_(z)y, 7 log_(x)z are in :

If log x = (log y) / (2) = (log z) / (5), thtenx ^ (4) y ^ (3) z ^ (- 2) =

Solve for x, y , z . log_2 x + log_4 y + log_4 z =2 log_3 y + log_9 z + log_9 x =2 log_4 z + log_16 x + log_16 y =2

Solve log_4(log_3x)+log_(1//4)(log_(1//3)y)=0 and x^2+y^2=17/4 .

Solve log_4(log_3x)-log_(1//4)(log_(1//3)y)=0 and x^2+y^2=17/4 .

Solve log_4(log_3x)+log_(1//4)(log_(1//3)y)=0 and x^2+y^2=17/4 .