Home
Class 11
MATHS
If z=x +i y such that |z+1|=|z-1|and arg...

If `z=x +i y` such that `|z+1|=|z-1|`and `arg((z-1)/(z+1))=pi/4` , then find `zdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=x+iy such that |z+1|=|z-1| and arg((z-1)/(z+1))=(pi)/(4) then

If arg((z-1)/(z+1))=(pi)/(2) then the locus of z is

The complex number z satisfying |z+1|=|z-1| and arg (z-1)/(z+1)=pi/4 , is

Find the locus of z if arg ((z-1)/(z+1))= pi/4

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

If z_(1)andz_(2) are two complex numbers such that |z_(1)|=|z_(2)| and arg(z_(1))+arg(z_(2))=pi, then show that z_(1),=-(z)_(2)

|z_(1)|=|z_(2)| and arg((z_(1))/(z_(2)))=pi, then z_(1)+z_(2) is equal to

If z_(1)andz_(2) both satisfy z+ddot z=2|z-1| and arg(z_(1)-z_(2))=(pi)/(4), then find Im(z_(1)+z_(2))

If z1=8+4i,z2=6+4i and arg((z-z1)/(z-z2))=(pi)/(4), then z, satisfies