Home
Class 11
MATHS
If |z-2-i|=|z|sin(pi/4-a r g z)| , wher...

If `|z-2-i|=|z|sin(pi/4-a r g z)|` , where `i=sqrt(-1)` ,then locus of z, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-2-i|=|z|sin((pi)/(4)-arg z)|, where i=sqrt(-1) ,then locus of z, is

If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")) , where i=sqrt(-1) , then locus of z, is

if |z-1|=|z-i| then locus of z is

If |2z-4-2i|=|z|sin((pi)/(4)-arg z) then the locus of z represents a conic where eccentricity e is

if |z-i Re(z)|=|z-Im(z)| where i=sqrt(-1) then z lies on

If z=i^(i) where i=sqrt(-)1 then |z| is equal to

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

In argand plane |z| represent the distance of a point z from the origin. In general |z_(1)-z_(2)| represent the distance between two points z_(1) and z_(2) . Also for a general moving point z in argand plane, if arg(z)=theta , then z=|z|e^(i theta) , where e^(i theta)=cos theta+i sin theta . If |z-(3+2i)|=|z cos((pi)/(4)-"arg z")| , then locus of z is

If |z-(3+2i)|=|z cos((pi)/(4)-argz)|, then locus of z is