Home
Class 11
MATHS
If z is a complex number having least ab...

If `z` is a complex number having least absolute value and `|z-2+2i|=1`,then `z=` `(2-1//sqrt(2))(1-i)` b. `(2-1//sqrt(2))(1+i)` c. `(2+1//sqrt(2))(1-i)""` d. `(2+1//sqrt(2))(1+i)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(i) = a) +-(1-i)/sqrt(2) b) +-(1+i)/sqrt(2) c) +-(1-i) d) +-(1+i)

sqrt(4i)=1.)+-sqrt(2)(1-i)2.)+-(1+i)3.+-(1-i)4.)+-sqrt(2)(1+i)

The complex number z which satisfy the equations |z|=1 and |(z-sqrt(2)(1+i))/(z)|=1 is: (where i=sqrt(-1) )

If z = ((1)/(sqrt(3)) + (1)/(2)i)^(7) + ((1)/(sqrt(3))-(1)/(2)i)^(7) , then

Fid the number of complex numbers which satisfies both the equations |z-1-i|=sqrt(2) and |z+1+i|=2

Let z_1=((1+sqrt(3)i)^2(sqrt(3)-i))/(1-i) and z_2=((sqrt(3)+i)^2(1-sqrt(3)i))/(1+i) then

If z^2=-i then is it true that z=+1/sqrt2 (1-i)

If z=(1)/((1-i)(2+3i)), then |z| is a.1 b.(1)/(sqrt(26)) c.(5)/(sqrt(26))d .non of these