Home
Class 11
MATHS
If |z-1|+|z+3|<=8, then the range of val...

If `|z-1|+|z+3|<=8`, then the range of values of `|z-4|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the minimum value of |z-1 if |z-3|-|z+1||=2

If |z_1 |=|z_2|=|z_3| = 1 and z_1 +z_2+z_3 =0 then the area of the triangle whose vertices are z_1 ,z_2 ,z_3 is

If |z_1|=1, |z_2| = 2, |z_3|=3 and |9z_1 z_2 + 4z_1 z_3+ z_2 z_3|=12 , then the value of |z_1 + z_2+ z_3| is equal to

If |z_1|=1, |z_2|=2, |z_3|=3 and |9z_1z_2 + 4z_1z_3 + z_2z_3|=36 , then |z_1+z_2+z_3| is equal to :

If z satisfies |z-1|<|z+3| then omega=2z+3-i, (where i=sqrt(-1) ) sqtisfies

If |z-2|= "min" {|z-1|,|z-3|} , where z is a complex number, then

If |z_(1)|=|z_(2)|=|z_(3)| and z_(1)+z_(2)+z_(3)=0 , then z_(1),z_(2),z_(3) are vertices of

If |z_(1)|=1,|z_(2)|=2,|z_(3)|=3 ,then |z_(1)+z_(2)+z_(3)|^(2)+|-z_(1)+z_(2)+z_(3)|^(2)+|z_(1)-z_(2)+z_(3)|^(2)+|z_(1)+z_(2)-z_(3)|^(2) is equal to