Home
Class 11
MATHS
If omega is a complex nth root of unity,...

If `omega` is a complex nth root of unity, then `sum_(r=1)^n(ar+b)omega^(r-1)` is equal to
A..`(n(n+1)a)/2`
B. `(n b)/(1+n)`
C. `(n a)/(omega-1)`
D. none of these

Text Solution

Verified by Experts

`E= sum_(r=1)^n(a+b) omega^(r-1)`
`= (a+b) +((2a+b) omega + (3a+b)omega^2 + (4a+b) omega^3 + .... + (na+b)omega^(n-1)`
`=b (1+ omega + omega^2 + .....+ omega^(n-1)) + a(1+ 2omega + 3omega^2 + 4 omega^3 + .... + n omega^(n-1)`
S`= 1 + 2omega + 3omega^2 + 4omega^3 + ..... + nomega^(n-2)`
S`omega= omega + 2omega^2 + 3omega^3 + .... + nomega^n`
subtracting these equations we get
`S(1-omega)= 1+ omega + omega^2 + omega^3 + .... + omega^(n-1) - n omega^n`
`= 0- n omega^n = -n`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b=1, then sum_(n=0)^(n)C(n,r)a^(r)b^(n-r) is equal to '

If omega be a nth root of unity, then 1+omega+omega^2+…..+omega^(n-1) is (a)0(B) 1 (C) -1 (D) 2

If omega is a complex cube root of unity then x_(n)=omega^(n)+(1)/(omega^(n)) then x_(1)x_(2)x_(3),............,x_(12)=

The value of sum_(r=1)^(n)(-1)^(r+1)(^nCr)/(r+1) is equal to a.-(1)/(n+1) b.(1)/(n) c.(1)/(n+1) d.(n)/(n+1)

If omega is a complex cube root of unity then the value of (1+omega)(1+omega^(2))(1+omega^(4)).......2n terms-

If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))/((1+omega^(4)-omega^(2))(1-omega^(4)+omega^(2)) is equal to

If omega(!=1) is a cube root of unity,then the sum of the series S=1+2 omega+3 omega^(2)+....+3n omega^(3n-1) is

If omega be an imaginary cube root of unity, show that 1+omega^n+omega^(2n)=0 , for n=2,4 .

If omega is a complex cube roots of unity, then find the value of the (1+ omega)(1+ omega^(2))(1+ omega^(4)) (1+ omega^(8)) … to 2n factors.