Home
Class 11
MATHS
If |z1/z2|=1 and arg (z1z2)=0 , then...

If `|z_1/z_2|=1` and `arg (z_1z_2)=0` , then

Promotional Banner

Similar Questions

Explore conceptually related problems

If |(z_(1))/(z_(2))|=1 and arg(z_(1)z_(2))=0, then

If z_(1)-z_(2) are two complex numbers such that |(z_(1))/(z_(2))|=1 and arg (z_(1)z_(2))=0, then

If |z_1|=|z_2| and arg(z_1)+arg(z_2)=pi/2 then (A) z_1z_2 is purely real (B) z_1z_2 is purely imaginary (C) (z_1+z_2)^2 is purely imaginary (D) arg(z_1^(-1))+arg(z_2^(-1))=-pi/2

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

If |z_1-1|=Re(z_1),|z_2-1|=Re(z_2) and arg (z_1-z_2)=pi/3, then Im (z_1+z_2) =

If |z_(1)|=|z_(2)| and arg (z_(1))+"arg"(z_(2))=0 , then

|z_(1)|=|z_(2)| and arg((z_(1))/(z_(2)))=pi, then z_(1)+z_(2) is equal to

Complex number z_1 and z_2 satisfy z+barz=2|z-1| and arg (z_1-z_2) = pi/4 . Then the value of lm (z_1+z_2) is