Home
Class 12
MATHS
[" 58.Let "f(x)=(1)/(sqrt(18-x^(2)))" .T...

[" 58.Let "f(x)=(1)/(sqrt(18-x^(2)))" .The value of "lim_(x rarr3)(f(x)-f(3))/(x-3)],[[" (a) "0," (b) "-1/9," (c) "-1/3," (d) "1]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(1)/(sqrt(18-x^(2))) The value of Lt_(x rarr3)(f(x)-f(3))/(x-3) is

Let f(x)=(1)/(sqrt(18-x^(2))) What is the value of lim_(xto3) (\f(x)-f(3))/(x-3) ?

Let f(x) = 1 /(sqrt( 18 - x^2) The value of Lt_(x -> 3) (f(x)-f(3)) / (x-3) is

The value of lim_(x rarr(1)/(2))((f(x)+x-1)^(3))/((x-(1)/(2))) is

Let f(x)= (sqrt(x+3))/(x+1) , then the value of lim_(x rarr -3^-) f(x) is :

Let f(x)=(sqrt(x+3))/(x+1) , then lim_(xrarr-3)f(x)

f(x)=sqrt(x^(2)+1) then lim_(xto3)(f(x)-sqrt(10))/(x-3) is

If f'(x)=k,k!=0, then the value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2)) is

Find lim_(x rarr2)f(x) when lim_(x rarr2)(f(x)-5)/(x-2)=3