Home
Class 9
MATHS
a^(p)=b^(9)=c^(r)=abc,quad pqr=?...

a^(p)=b^(9)=c^(r)=abc,quad pqr=?

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(p)=b^(q)=c^(r)=abc, then pqr=

a^(p)=b^(q)=c^(r)=abc,thenpqr=

If a^(p)=b^(q)=c^(r)=abc , then pqr =_______.

If p^(a)=q^(b)=r^(c ) and pqr=1 show that ab+bc+ca=0

If bc+qr=ca+rp=ab+pq=-1 and (abc,pqr!=0) then |[ap,a,p],[bq,b,q],[cr,c,r]| is (A) 1 (B) 2 (C) 0 (D) 3

If bc+qr=ca+rp=ab+pq=-1 and (abc,pqr!=0) then |[ap,a,p],[bq,b,q],[cr,c,r]| is (A) 1 (B) 2 (C) 0 (D) 3

If bc+qr=ca+rp=ab+pq=-1 and (abc,pqr!=0) then |[ap,a,p],[bq,b,q],[cr,c,r]| is (A) 1 (B) 2 (C) 0 (D) 3

The sum of first p.q.r terms of an AP are a;b;c respectively.Show that a(q-r)/(p)+b(r-p)/(q)+c(p-q)/(r)=0