Home
Class 10
MATHS
60*(x)/(x+1)+(x+1)/(x)=2(4)/(15),x!=0,-1...

60*(x)/(x+1)+(x+1)/(x)=2(4)/(15),x!=0,-1

Promotional Banner

Similar Questions

Explore conceptually related problems

(x)/(x+1)+(x+1)/(x)=(34)/(15),(x!=0,-1)

Solve each of the following quadratic equations: (x)/(x+1)+(x+1)/(x)=2(4)/(15),xne.0,-1

(16)/(x)-1=(15)/(x+1);x!=0,-1

(x-1)(x-2)(x-3)(x-4)=15

If tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3),x in(0,1), then (x^(4)+(1)/(x^(4))) is equal to

((x-1)(x+1)(x+4)(x+6))/(7x^(2)+8x+4)>0

If x^(2)+3x+1=0 then find x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4)),x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))

The equation is true for (12x+1)/(4)=(15x-1)/(5)+(2x-5)/(3x-1)

(d)/(dx) [(x +1)(x^2+1)(x ^(4) + 1) (x ^(8) +1)]=(15 x ^(p) -16x^q+1) (x-1) ^(-2) implies (p,q)=