Home
Class 12
MATHS
If |[x^3+1, x^2, x] , [y^3+1, y^2, y] , ...

If `|[x^3+1, x^2, x] , [y^3+1, y^2, y] , [z^3+1, z^2, z]|=0` and `x, y, z` are all different then prove that `xyz=-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |(x, x^2, x^3 +1), (y, y^2, y^3+1), (z, z^2, z^3+1)| = 0 and x ,y and z are not equal to any other, prove that, xyz = -1

If |(x, x^2, x^3 +1), (y, y^2, y^3+1), (z, z^2, z^3+1)| = 0 and x ,y and z are not equal to any other, prove that, xyz = -1

Consider the determinant Delta=abs[[x,x^2,1+x^3],[y,y^2,1+y^3],[z,z^2,1+z^3]] , Where x,y,z are different. Show that if Delta=0 ,then 1+xyz=0

If x,y,z are different and Delta=|[x,x^2,x^3-1],[y,y^2,y^3-1],[z,z^2,z^3-1]|=0 , then using properties of determinants, show that xyz=1

If x != y != z and |[[x,x^2,1+x^3],[y,y^2,1+y^3],[z,z^2,1+z^3]]|=0 then using properties of determinants, show that xyz= -1.

If |{:(x,x^2,x^3+1),(y,y^2,y^3+1),(z,z^2,z^3+1):}|=a and x ney nez , prove that, xyz=-1.

If [[x,x^2,x^3-1],[y,y^2,y^3-1],[z,z^2,z^3-1]]=0 then prove that xyz=1 when x,y,z are non zero and unequal.

If x!=y!=z and |x x^2 1+x^3 y y^2 1+y^3 z z^2 1+z^3|=0 , then prove that x y z=-1 .