Home
Class 7
MATHS
" (b) If "cos^(2)A-sin^(2)A=tan^(2)B," p...

" (b) If "cos^(2)A-sin^(2)A=tan^(2)B," prove that "tan^(2)A=cos^(2)B-sin^(2)B

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(2)A-sin^(2)A=tan^(2)B, prove that 2cos^(2)B-1=cos^(2)B-sin^(2)B=tan^(2)A

If cos^(2)A-sin^(2)A=tan^(2)B then prove that 2cos^(2)B-1=tan^(2)A

If cos^2 A - sin^2 A = tan^2 B then prove that 2 cos^2 B -1 = tan^2 A

If cos^2 A - sin^2 A = tan^2 B then prove that 2 cos^2 B -1 = tan^2 A

Prove that sin(A+B)sin(A-B)=cos^2B-cos^2A

Prove that sin (A+B) sin (A-B)=cos^(2) B-cos^(2) A

Prove that (i) (sin^(2)A cos^(2)B - cos^(2)A sin^(2) B )=(sin^(2)A- sin^(2)B) (ii) (tan^(2)A sec^(2)B - sec^(2)A tan^(2)B)=(tan^(2)A- tan^(2)B)

If tan^(2) A= 2 tan ^(2) B+1, "then " cos 2A + sin^(2)B =

Prove : (1-cos^(2)A) *sec ^(2)B + tan^(2)B (1- sin^(2)A) = sin^(2) A + tan^(2)B

Prove the following identities: tan^(2)A-tan^(2)B=(cos^(2)B-cos^(2)A)/(cos^(2)B cos^(2)A)=(sin^(2)A-sin^(2)B)/(cos^(2)A cos^(2)B)(sin A-sin B)/(cos A+cos B)+(cos A-cos B)/(sin A+sin B)=0