Home
Class 11
MATHS
If |z-i R e(z)|=|z-I m(z)| , then prove ...

If `|z-i R e(z)|=|z-I m(z)|` , then prove that `z` , lies on the bisectors of the quadrants.

Text Solution

Verified by Experts

`z = x +iy`
`rArr Re (z) = x, Im (z) = y`
`|z - iRe(z)|=|z- Im (z)|`
`rArr |x + iy -ix|=|x + iy -y|`
`rArr x^(2) +(x-y)^(2) = (x-y)^(2) + y^(2)`
`rArr x^(2) = y^(2)`
` rArr |x| = |y|`
Hence, z lies on the bisectors the quadrants.
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-iRe(z)|=|z-Im(z)|, then prove that z lies on the bisectors of the quadrants, " where "i=sqrt(-1).

if |z-i Re(z)|=|z-Im(z)| where i=sqrt(-1) then z lies on

If |z-1| + |z + 3| le 8 , then prove that z lies on the circle.

If |z + i| = |z - i|, prove that z is real.

If z_(2) be the image of a point z_(1) with respect to the line (1-i)z+(1+i)bar(z)=1 and |z_(1)|=1 , then prove that z_(2) lies on a circle. Find the equation of that circle.

If z = (3)/( 2 + cos theta + I sin theta) , then prove that z lies on the circle.

If |z-i|<|z+i|, then

if Im((z+2i)/(z+2))= 0 then z lies on the curve :

If z = x + iy lies in the third quadrant, then prove that (barz)/(z) also lies in the third quadrant when y lt x lt 0