Home
Class 11
MATHS
" Prove that "cos^(3)A cos3A+sin^(3)A si...

" Prove that "cos^(3)A cos3A+sin^(3)A sin3A=cos^(3)2A

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos^3 A cos 3A + sin^3 A sin 3A = cos^3 2A

sin^(3)A sin3A+cos^(3)A cos3A=cos^(3)(2A)

Prove that: (cos^(3)A-cos3A)/(cosA)+(sin^(3)A+sin3A)/(sinA)=3

Prove that: (cos^(3)A-cos3A)/(cosA)+(sin^(3)A+sin3A)/(sinA)=3

i) Prove that: cos^(3)2A+3cos2A = 4(cos^(6)A-sin^(6)A) ii) Prove that: 4(cos^(3)10^(@) + sin^(3)20^(@)) = 3(cos10^(@)+sin20^(@))

Prove that: sin3e sin^(3)e+cos3e cos^(3)e=cos^(3)2e

Prove that cos ^ (3) and cos3e + sin ^ (3) and sin3e = cos ^ (3) 2e

Prove the following : cos^3A.cos3A+sin^3Asin3A = cos^3 2A

Prove that : (cos^(3) A + sin^(3) A)/ (cos A + sin A) + (cos^(3) A - sin^(3) A)/(cos A - sin A) = 2

Prove that ((cos^3A-sin^3A)/(cosA - sinA))- ((cos^3A + sin^3A)/(cosA + sinA))= 2sin A cos A